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Quantum key distribution (QKD) is a major research topic because it provides unconditional security. 
Unfortunately, many imperfections remain in QKD’s experimental realization. The Faraday–Michelson (FM) 
QKD system is proposed to eliminate these imperfections using polarization. However, the long arm’s phase 
modulator (PM) has an unexpected insertion loss, meaning that the state sent is no longer perfect. In this 
letter, we propose an alternative FM-QKD system structure, and analyze the security and key generation 
rate in comparison with the original system via different analysis methods. We find an obvious key rate 
improvement when the PM insertion loss is not extremely small. 
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Quantum key distribution (QKD)[1] allows two certificated 
parties, known here as Alice and Bob, to share secret 
keys, which have unconditional security based on the 
laws of quantum mechanics, as has been proved in sev-
eral ways in the literature[2,3]. However, in reality, these 
imperfect setups cannot work in exactly the same way 
as that described in the protocol, meaning that the 
operation may not be completely secure. At present, 
QKD has become a very hot research topic[4,5] and most 
QKD operations use the BB84 protocol, which is gener-
ally based on either phase or polarization coding[6–10]. 
The original phase coding-based QKD[11,12] scheme 
uses an unbalanced Mach–Zehnder interferometer,  
but it is very unstable because the birefringence in the 
fiber makes the polarization very complex; therefore, the 
Faraday–Michelson (FM) QKD system[12] was proposed.  
As described in Ref. [12], a Faraday mirror’s Jones 
matrix can be given by
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Finally, we can get the visibility of the system as 1, 
which means that the polarization problem can be 
solved. 

In an ideal FM-QKD system, the phase modulator 
(PM) in the long arm has no insertion loss, and the 
states that Alice sends are the BB84 states, while in 
reality, the PM causes more losses in the long arm, 
which result in imperfect BB84 states. In this case, we 
must find another way to confirm the security of the 
method other than the GLLP[13] formula. Similar to 
the assumption used in our previous work[14], in which 
we find that the real-life states that Alice sends can 

be assumed to be perfect BB84 states combined with 
a unitary transformation. More interestingly, we can 
place the PM outside the interference ring, which has 
no corresponding imperfect state preparation problem. 
Finally, we analyze the final key generation rate, first 
with infinite decoy states, and then with the vacuum, 
decoy, and signal states. 

A schematic diagram of the FM system is shown in 
Fig. 1. 

From Fig. 1, the weak coherent states that Alice pre-
pared in the long arm and the short arm can be given 
as follows: 
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where l s,a b  represent the weak coherent state of 
the long and short arms, respectively. l S,n n  repre-
sent the n photon state in the long and short arms, 
respectively. µ is the mean photon number of the long 
arm while ν is the mean photon number of the short 
arm. We consider the loss of the PM on both sides 
to be the same, and this loss can be set as r. We can 
therefore find that ν  = r 2µ, eiθ is random but uniform 
at both sides, eiφ is the modulated phase by PM in the 
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where AA0 , 1  are mutually orthogonal states in Alice’s 
system and unknown to Alice. Then, we can show that 
the state emitted by the virtual source with a unitary 
transformation is the same as that of the practical  
FM-QKD system with
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where m�  is the mean number of the virtual source, P�  
is the pass efficiency of the single-photon state, and 

np�  denotes the probability distribution of the n-photon 
state of the virtual source. When we assume that 
this unitary transformation is controlled by Eve, we 
can easily see that the security of the virtual source 
is the same as that of the practical QKD. Based on 
this analysis, we can show that the upper bound of the 
single-photon detection rate is 
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We can clearly see that this has improved the secret 
key rate by a factor of eµ−ν. In addition to the improve-
ment offered in the theory, we also have some ideas 
with regard to the practical system. First, we can 
simply add another PM with the same loss to the short 
arm, and then the single-photon state is the ideal BB84 

long arm. Using the method given by Lo et al.[15], the 
single-photon state sent by Alice can be given by 
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where φ can be 0, 0.5π, π, and 1.5π which refer to the 
four states emitted by Alice. Here we can clearly see 
that these are no longer the perfect BB84 states, so we 
cannot simply use the GLLP. 

For simplicity, we assume that the state emitted by 
Alice is the perfect BB84 state, whereas the unbal-
anced loss at Alice’s side is all controlled by Eve, who 
is a third party, and then the upper bound of the final 
single-photon detection rate can be estimated by
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where P is the probability of the single photon emitted 
by Alice, α is the loss efficiency of the fiber, L is the 
length of the quantum channel. PA and PB are the pass 
efficiencies of Alice and Bob, respectively. Our previous  
work[14] shows that the practical state in Eq. (5) is as 
secure as the perfect BB84 state, which means that 
every effective click of the avalanche photodiode can 
generate a secret key. In this analysis, it was proved 
that the practical state is equal to the perfect BB84 
state combined with a unitary transformation. The vir-
tual setup is shown in Fig. 2. 

The form of the unitary transformation is 

Fig. 1. QKD system with FM interferometer. 

Fig. 2. Virtual setup of the QKD with a virtual source and a unitary transformation. 
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the detection error rate, κ is the mean number of the 
state emitted by Alice, Qκ is the gain of the photon 
state, Eκ is the error rate of the photon state, P1 is the 
probability of the single-photon state, e1 is the error 
rate of the single-photon state, and h is the binary 
Shannon information function. 

In the first case, we can consider the perfect scenario. 
The second case is based on the virtual source (we call 
this the VS case). In the third case, we consider the 
unbalanced attenuator to be controlled by Eve, which 
is the same as the case where we add another attenua-
tor to the short arm (we call this the ACE case). The 
fourth case is where the PM is placed outside the inter-
ference ring (we call this the PMO case). The param-
eters in these cases can be given as follows: 
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In the third case, 
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The results of the simulation are given in Fig. 4 with 
different values of the insertion loss of the PM, which 
is represented by r. The mean photon number is 0.6 
and the other parameters are referred to as the GYS 
parameters[16]. From these results, we can see that for 
the different PM insertion losses, the final key gener-
ation rate of the perfect scenario is undoubtedly the 
best, while that of the ACE case is the worst. However, 
the other two situations do show different performances 
under the different insertion loss conditions. When the 
insertion loss is 2/3, the VS case has a higher final 
key generation rate (Fig. 4(a)). However, as the inser-
tion loss increases to 1/2, the two key generation rate 
curves have a crossing point (Fig. 4(b)). When the 
transmission distance is shorter than the distance to 
the crossing point, the PMO case has the higher key 
generation rate, and when the transmission distance is 
longer than the distance to the crossing point, the VS 
case has the better rate. As we expected, the PMO case 
produces a better performance when the insertion loss 
of the PM increases to 1/3 (Fig. 4(c)). 

We analyze the lower bound of the secret key rate 
using the vacuum, decoy, and signal states[17–21] in the 
four different cases described above. 

First, we can obtain the lower bound of Y1 and the 
upper bound of e1 from 
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state. In this case, we can show that the upper bound 
of the single-photon detection rate is 
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This is just the same as Eq. (6), which is exactly lower 
than the virtual source. 

In our method, we then put the PM outside the FM 
interference ring (the detailed setup of which can be 
shown in Fig. 3 and with the calculation of Eq. (10), 
it can also solve the polarization problem), so that 
the state emitted by Alice is the perfect BB84 state, 
and the loss at Bob’s side is no longer r 2 as described 
before, but is simply r because the light passes through 
the PM only once. We can therefore easily obtain the 
upper bound of the single-photon detection rate as
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where PAʺ = 1 is the pass efficiency at Alice’s side, 

while B =
2

P n
m
′′′′  is the pass efficiency at Bob’s side, and 

rn m mn= =′′ .
When compared with Eq. (9), we can see that it per-

forms differently with different losses in the PM.
We consider the infinite decoy states and calculate 

the lower bound of the secret key rate in the four 
different cases. First, we can get the functions
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where ηD is the detector efficiency, Y0 is the dark count 
rate, Y1 is the yield of the single-photon state, eDet is 

Fig. 3. FM-QKD system with PM out of the interference ring. 
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Fig. 4. Simulation results of the infinite decoy states: (a) r2  = 2/3, (b) r2  = ½, and (c) r2  = 1/3. 
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Fig. 5. Simulation results of the vacuum, decoy, and signal states (a) r2 = 1/4, (b) r2 = 1/6, and (c) r2 = 1/9.

Fig. 6. Relation between the transmission length and insertion 
loss when VS and PMO cases have te same secure key rate. 
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where the variables are the same as in Eq. (12). 
The mean photon numbers of the three states that 

we use are 0, 0.2, and 0.6 and the other parameters are 
the same as those of the infinite decoy states. We can 
get the final key generation rate of the system with the 
decoy state using

	 1 1 1
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The simulation result is as we expected, where the VS 
case and the PMO case are better than the case in 
which the unbalanced loss is controlled by Eve and  
worse than the perfect scenario. In addition, this 
situation is the same as the infinite decoy states 
situation. When the insertion loss of the PM is 1 4   
(Fig. 5(a)), the VS case has better performance, and 

as the insertion loss increases, the crossing point occurs 
at approximately 1 6  (Fig. 5(b)). Figure 6 shows the 
relation between the transmission length and the inser-
tion loss when the VS and the PMO cases have the same 
secure key rate, so that when the insertion loss is 1 9   

(Fig. 5(c)) the PMO case has a higher key generation 
rate, and higher insertion losses lead to greater advan-
tages for the PMO case. 

In conclusion, we propose a new type of FM-QKD 
system with the PM located outside the interference 
ring. We compare the transmission distance and the 
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key generation rate with those of other experimental 
setups. The comparison results show that in the practi-
cal QKD, higher insertion losses in the PM lead to bet-
ter performance levels with our method. However, when 
the PM is outside the interference ring, we will require 
accurate electronics technology to distinguish between 
the two pulses outside the ring and apply different 
phase modulation voltages to the PM. 
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